Update December 2021
Scientific publications (peer-reviewed):
- Berzaghi, F., Wright, I. J., Kramer, K., Oddou-Muratorio, S., Bohn, F. J., Reyer, C. P., … & Hartig, F. (2020). Towards a new generation of trait-flexible vegetation models. Trends in Ecology & Evolution, 35(3), 191-205.
- Oberpriller, J., Cameron, D. R., Dietze, M. C., & Hartig, F. (2021). Towards robust statistical inference for complex computer models. Ecology Letters, 24(6), 1251-1261.
- Hülsmann, L., Chisholm, R. A., & Hartig, F. (2021). Is Variation in conspecific negative density dependence driving tree diversity patterns at large scales? Trends in Ecology & Evolution, 36(2), 151-163.
- Oberpriller, J., Herschlein, C., Anthoni, P., Arneth, A., Krause, A., Rammig, A., … & Hartig, F. (2021). Climate and parameter sensitivity and induced uncertainties in carbon stock projections for European forests (using LPJ-GUESS 4.0). Geoscientific Model Development Discussions, 1-34.
Publications:
Oberpriller, J., Arneth, A., Herschlein, C., Rammig, A. & Hartig, F. (2021 im Druck). Modellunsicher-heiten in Klimafolgeprojektionen – eine Einführung. In: Mitteilungen der Fränkischen Geographischen Gesellschaft Band 67: Herausforderungen des Klimawandels in Bayern. Erlangen.
In preperation:
Oberpriller, J., Trotsiuk, V., Heiland, L., Hülsmann, L. & Hartig, F. (in preparation) Local Adaptation Bayesian Calibration of a physiological forest ecosystem model shows evidence of biological adaptations across Europe
Goals of the subproject
To assess the consequences of mitigation and adaptation strategies, public and private decision-makers need not only detailed forecasts of the most likely impacts of climate change, but also estimates of the uncertainties associated with such forecasts.
Subproject 5 of BLIZ (BayRisk) at the University of Regensburg deals with quantifying uncertainties in model projections. BayRisk will create uncertainty estimates of the ecological models used in BLIZ, using Monte-Carlo simulations and Bayesian statistical methods. The calculated uncertainties are then used in cooperation with the socio-economic subprojects of BLIZ to derive probability distributions and risks for economically relevant parameters. Hence, BayRisk forms a link between the ecological subprojects 1-3 and the socio-economic subprojects 4 & 6. The latter conduct research on land use decisions and the evaluation of risks and options for action.